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GREEN'S FUNCTIONS FOR THE PARALLEL-WALL WAVEGUIDE

by F. J. Tischer

IEEE A
Summary - A method is presented for the determination of the two-dimensional Green's

functions for the scalar wave equation for a region between two parallel lines. These
functions are useful for the consideration of electromagnetic parallel-wall waveguides.

The approach is based on using electromagnetic boundary conditions. S s




GREEN'S FUNCTIONS FOR THE PARALLEL-WALL WAVEGUIDE
by F. J. Tischer

Introduction

In considering the wave propagation in waveguides, Green's functions are
very useful for the determination of the distribution of the field components resulting
from excitation by arbitrary sources. The Green's functions represent the field dis-
tributions resulting from excitation by point sources. A special case of a waveguide
is the parallel-wall guide. Morse and Feshbach have shown the derivation of the
Green's function for this type of waveguide by the method of electromagnetic images*.
In the following considerations, a different method using electromagnetic boundary

conditions is presented.

Original Conditions

A waveguide consisting of a pair of perfectly conducting walls is assumed
with the walls parallel to the xz=plane and extending to infinity. The walls are lo-
cated ot y =0 and y =d. The waves propagate between the walls in the direction
of the z=axis. The corresponding geometrical conditions are indicated in Fig. 1.
The waves propagating along such a structure can be considered generally as a
superposition of orthogonal transverse electric (TE) and transverse magnetic (TM)
wave modes. The components of the field intensities for these modes can be derived
from the longitudinal components. In the absence of sources, these components

satisfy the following wave equations:

= 2 2., _
TE (E, =0): V H +nq H =0,
- 2 2.
T™ (H_=0): V E +n E =0, )

* P. M. Morse and H. Feshbach: Methods of Theoretical Physics. McGraw=Hill,
New York, N. Y., 1953, pp. 812-818.
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where q2 = ki - kz° The quantities ko and kZ are the free-space and the longitudi-
nal propagation constants (ko = 21:/)\0, kZ 221!‘/)\9\;, The boundary conditions corres-

ponding to the geometrical configuration indicated in the figure are

y=0,y=d: E =0, —==0. @)

- The general transverse distributions Hz(x,y) and Ez(x,y) which satisfy the
wave eguations [Eqs. {1)] and the boundary conditions [Eqs. (2)] have the form
©
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n=0
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il kxx (3b)
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where kn =nu/d. In the presence of sources in the yz-plane, the amplitudes a,
and o; depend on the distribution of these sources which are assumed to have infi-

nite extension and to be uniform in the z-direction.

Method of Derivation

The approach followed in deriving the Green's functions is based on the
fellowing concept. First, *he field intensiiies are determined for the Regions | and
Il. Thete regions are located above and below the yz=plane in which an infinite
line current is assumed at the position Y, Os @ source. The line current is magnetic
in the case of TE and electric for TM waves. The boundary conditions for the
various field components at x = 0 yield then relationships between the amplitudes
of the wave elements [Eqs. (3)] in Region | and Il and relationships for their am-

plitudes depending on the structure of the source.

TE Waves Excited by a Line Source

The scalar Green's function is the solution of the wave equation in the

presence of a point source at X0 Yo It satisfies the nonhomogeneous wave equa-

tion




v2G+n2G=-8(x=~xo)5(y-yo)n (4)

The corresponding wave equation for Hz is

2y iR H =i "‘2 I 8(x-x)8(y-y) (5)
Vfr z N “wp zm X T XS PN T Y

where the source is represented by an infinite magnetic=line current Izm° Com-~
parison of Eqs. {4) and (5} indicates that after normalization, lzm =1, Garnd Hz

are interrelated by

GTEa 48 | | ©)

With the source at x, = 0, the distribution of HZ in Region | above the y-axis

becomes
a cos kny e . (73

The transverse components of the magnetic and electric field infensities can be

derived from Hz by the familiar relations

- -ikz
Hfr - 2 v.hf Hz’
n
- -
E" \H" x lz) wp/kz , (8)

where Vfr = ix 9/0x = TY 9/dy. Using these equations, the y-component of

the electric field intensity becomes

© wpk
T X
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The corresponding equations in Region Il are



W% Hky x
H = L b cosk ye "X , (10q)
z n n
n=10

® wpk .
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Next, the boundary conditions in the yz-plane are applied. These condi-

tions are (Morse and Feshbach)

x =02 H - H =0, {(11a)

E -E =-1 =-1 8!\)/‘)/0,‘

-
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where J s the magnetic surface-current density in the z=direction between the
Regions | and Il at x =0, The first boundary condition, Eq. (11a), yields after
substituting of Egs. (7) and (10a) into {11a) as a relationship between the ampli-

tudes of the waves in Region | and i!

a =b

n n °

In the second boundary condition, Eq. {11b), a series developmen? is introduced

for the delta function,

i ™~m8
N

&(y - yo) = I 3 coskny COSknyo ,

so that, substituting Eqs. (9) and (10b) into {11b},

2
- l_n_
a, =3 wpkx COSknyo (12)

is obtained. The disfribution of HZ hence becomes
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The corresponding Green's function af an arbitrary position X is then

i ® 1 -ik Ix-x ‘
G(x,ylxo,yo) = = i ) I T cosknyo cosk y e x ol (14)
n=0 o
where
2 2
kx AL kn

TM Waves Excited by a Line Source

The Green's function for this case tatisfies the wave equation, Eq. (4}.
The boundary conditions at the walls are G{x,0} = Gix,d}) =0. The corresponding
nonhomogeneous wave equation for the longitudinal component of the electric
field intensity is

2 ‘ 2 _ .7 3 N f A 3
V Ez =N Ez T e gze 8 xo)S«gy Yol e 1

where ‘ze is the electric line current which represerts a point source in the cross=

sectional plane. The Green’s function G and E_ are interrelated b
- b4

™ . w ,
G o= it’-% EN - (16)

n
Assuming a source at x =0, the distributions of the electric field intensi-
ties in the Regions | and if are

3
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The *ransverse components of the fieldstrengths are given by



and

H" = l-’\iz X Etr) ue/kz .

These relationships yield for the y=components of the magnetic field intensity

i © a | wek L |
TR L T (18]
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The boundary conditions in the yz-plane are
= ! n o e
x =0z EE - E- =0, {19a}

z z
Ho- W' e = sly-y (19)
y y e ze o'’

where Je is the density of the electric surface current ai the boundary between
Region | and li. The firs* boundary cordi‘ior gives a; = bn . Stbstitution cf Eq.

{18} into {19b), muliipiicaticr by sin k_y. ard integraticr from y =0 foy =d

yields after normalizatien (i = 1;
ze
| 2
@l = oo e sink y
n d wek n’o

Substitution into Eq. (18} yields for the longitudinal field irtensity

2 -
I < : , Fikylx-xo) :
Ez( ) 2 Z sin kny sin knyo e( tikix=xo) . (20)

The corresponding Green's function for a point source at LI is



f Y o= | ® | . . -ikn, x-xo'
Gix,y Yo Uy n{ T(-i sin kny sin kn,.yo e ' " . (213

Solution for Arbitrary Excitation

The Eqs. {14) and (21) for *he Green's functions can be used for solving
the wave equation for arbitrary excitation. The nonhomogeneous wave equation
for an arbitrary distribution of the zources has the form

2 2 . , : o
V7 byl 0wy =gix oy b 122}

Combination with the corresponding wave equation for the Green's function [Eq.

(4)] and simpie manipulation yield
Gixiy) = I Glxry|x v 3| gl y ey 23]

Both functions u and G must satisfy the same boundary conditions at y =0 and

y =d.



Appendix

Source at Arbitrary Position

if the source is located at a position o the Green's functiors have changed
accordingly. Under these conditions, x becomes a transformed coordinate x*, where
x'=x - X For the Region [, the exponentia! function in Eq. 13 has then the form

e_IkX(x‘x°). For the Region il, the corresponding wave function is e"rlk"'x = e+|kx(x-xo)°

Since x is smaller than X it car be written
e‘*'ikx(’("xo) - e'ikx | x=xo|

The Green's function valid for both regions can ther. be expressed in the form as indi-

cated in Eq. 14.
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